Dirichlet \(L\)-Function of Principal Character

Theorem

Let \(\chi_0\) be the principal character modulo \(q\). Then

\[ L(s, \chi_0) = \zeta(s) \prod_{p \mid q} \left(1 - \frac{1}{p^s}\right).\]
Proof

From the Euler product formula for Dirichlet \(L\)-functions when using the principal character our product reduces to primes for which \(\gcd(p, q) = 1\). This is equivalent to when \(p \not\mid q\), and therefore

\[ L(s, \chi_0) = \prod_{p} (1 - \chi_0(p)p^{-s})^{-1} = \prod_{p \not\mid q} (1 - p^{-s})^{-1}\]

given when \(p \mid q\) the term reduces to \(1\) with \(\chi_0(p) = 0\).

Therefore

\[\begin{align*} \zeta(s) &= \prod_{p} (1 - p^{-s})^{-1} \\ &= \prod_{p \mid q} (1 - p^{-s})^{-1} \prod_{p \not\mid q} (1 - p^{-s})^{-1} \\ &= \prod_{p \mid q} (1 - p^{-s})^{-1} L(s, \chi_0) \end{align*}\]

and hence

\[ L(s, \chi_0) = \zeta(s) \prod_{p \mid q} \left(1 - p^{-s}\right).\]